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A toy-model as... motivating example!

a 1-d.o.f. oscillator

Original dynamics: mẍ + kx = 0 , with (x0, ẋ0) initial data , (1)

usually rewritten in state-space form, as:

d
dt

[
x
ẋ

]
=

[
0 1

m
−k 0

] [
x
ẋ

]
, with

[
x0
ẋ0

]
initial data . (2)

=⇒ Choose the Hamiltonian formalism!
Energy variables: position q := x, momentum p := m ẋ,

Hamiltonian function: H(X) := 1
2 m p2 + 1

2 k q2, with X := (q, p),
Co-energy variables: ∂qH = k q force, ∂pH = 1

m p := ẋ velocity,
Dynamical system:

d
dt

X =

[
0 1
−1 0

] [
k q
1
m p

]
= J gradXH(X) .

with skew-symmetric matrix J :=

[
0 1
−1 0

]
, i.e. JT = −J.
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A toy-model as... motivating example!

a 1-d.o.f. oscillator (2)

Theorem

J skew-symmetric =⇒ d
dt H(X(t)) = 0.

Hence, the dynamical system is conservative, i.e. H(X(t)) = H(X0).

dH
dt

(t) = (gradXH(X),
d
dt

X)R2

= (gradXH(X), J gradXH(X))R2

= 0 , since J is skew symmetric!
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A toy-model as... motivating example!

Severe consequences on numerical simulation!
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A toy-model as... motivating example!

General ideas on Port Hamiltonian Systems (pHs)

1 strongly structured mathematical dynamical systems: both linear
and non-linear, both finite-dimensional and infinite-dimensional,

2 based on physical grounds, allowing for different modelling levels,
3 all physics permitted: solid mechanics, structural mechanics, fluid

mechanics, electromagnetism, electrical circuits, ...
4 comes along with specific numerical methods, which do preserve,

at the discrete level, the structure of the continuous equations,1

5 allows for open dynamical systems, with interacting ports,
6 modularity: interconnection of sub-systems, and... easy

multiphysics modelling, e.g. Fluid-Structure Interaction2,
7 physically-based strategy for control and stabilization,
8 extensions to dissipative dynamical systems are available.

1come on June, 18th, to ROMA Seminar by Saïd Aoues!
2wait till... Part II, by Flávio Ribeiro, in a few minutes!
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A toy-model as... motivating example!

Outline

1 Finite-dimensional case: Ordinary Differential Equations
(ODEs)

Useful Tools
Closed Systems
Open Systems
A short word on dissipation?

2 Infinite-dimensional case: Partial Differential Equations (PDEs)
New Useful Tools
Closed systems
More examples in fluid mechanics!
A short word on dissipation? Navier-Stokes, at last!

3 Sloshing? a typical Fluid-Structure Interaction in Aeronautics!
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ODEs Useful Tools

Useful Tools in Finite Dimension

These 3 tools will be of major help in the study:
the gradient: to be able to compute gradXH(X), when X ∈ R2n,
skew symmetric matrices: JT = −J,
in the special case of quadratic Hamiltonian, hence
linear dynamical systems Ẋ = A X: matrix exponentials.

Straightforward consequences on stability:
1 spec(A) ∈ C−

0 =⇒ (exp(t A)→ 0, as t→∞), i.e. asymptotic stability.
2 ∃λ ∈ spec(A), <e(λ) > 0 =⇒ (‖ exp(t A)‖ → ∞, as t→∞), i.e.

(exponential) instability.
3 the case with eigenvalues on iR is more subtle, and requires

geometric insight on the eigenspaces to be solved: either stability
or (polynomial) instability can be found.
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ODEs Closed Systems

Ex 1: the n-d.o.f. linear oscillator

Original dynamics: Mẍ + Kx = 0 , with (x0, ẋ0) initial data , (3)

with mechanical parameters M = MT > 0, K = KT ≥ 0.

Energy variables: q := x ∈ Rn, p := M ẋ ∈ Rn, set X = (q, p) ∈ R2n,
Hamiltonian function: H(X) := 1

2 pT M−1 p + 1
2 qT K q,

Co-energy variables: gradqH = K q, and gradpH = M−1 p := ẋ,
Dynamical system in standard form:

d
dt

X =

[
0 I
−I 0

] [
K q

M−1 p

]
= J gradXH(X) ,

with J :=

[
0 I
−I 0

]
is skew-symmetric in R2n.
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ODEs Closed Systems

Ex.2: a 1-d.o.f. nonlinear oscillator: the pendulum

Original dynamics: J θ̈ + g sin(θ) = 0 ,with (θ0, θ̇0) initial data . (4)

=⇒ Choose the Hamiltonian formalism!
Energy variables: position q := θ, momentum p := J θ̇,
Hamiltonian function: H(X) := 1

2 J p2 + g (1− cos(θ)),
Co-energy variables: ∂qH = g sin(θ) torque, ∂pH = 1

J p := θ̇
angular velocity,
Dynamical system with X = (q, p):

d
dt

X =

[
0 1
−1 0

] [
g sin(θ)

θ̇

]
= J gradXH(X) .

Theorem

J skew-symmetric =⇒ d
dt H(X(t)) = 0. Hence, the non-linear system is

conservative, i.e. H(X(t)) = H(X0), with non-quadratic Hamiltonian.
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ODEs Open Systems

Open Systems, Ports, and Energy Balance (1)

Suppose we have interaction with the environment, by means of:
actuators, with control u ∈ Rm,
sensors, with co-localized measurements or observations y ∈ Rm,

then, the port-Hamiltonian system (pHs) is defined by:

Ẋ = J gradXH(X) + g(X) u(t) , (5)
y(t) = g(X)T gradXH(X) . (6)

Theorem
J skew-symmetric =⇒ the system is lossless. Indeed,
d
dt H(X(t)) = (y(t), u(t))Rm , or H(X(t)) = H(X0) +

∫ t
0(y(τ), u(τ))Rm dτ .
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ODEs Open Systems

What about the linear / quadratic case?

Suppose the Hamiltonian function is quadratic H(X) := 1
2 XT Q X, with

Q = QT > 0, we then easily compute gradXH(X) = QX, and we can
define the closed linear dynamical system:

Ẋ = J Q X ,

that is, the matrix of the dynamics reads A := J Q.

Let B := g be the control matrix of size n× m, then the open
dynamical system is given by:

Ẋ = J Q X + B u(t) , (7)
y(t) = BT Q X . (8)

that is, the m× n observation matrix reads C := BT Q.
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ODEs A short word on dissipation?

Ex 1: n-d.o.f. damped oscillator

Original dynamics: Mẍ+(C+G)ẋ+Kx = 0 ,with (x0, ẋ0) initial data , (9)

with M = MT > 0, K = KT ≥ 0 and C = CT , G = −GT .
Energy variables: q := x ∈ Rn, p := M ẋ ∈ Rn,
Hamiltonian function: H(X) = 1

2 pT M−1 p + 1
2 qT K q,

Dynamical system in standard form:

d
dt

X =

[
0 I
−I −(G + C)

]
gradXH(X) = (J − R) gradXH(X) ,

with J :=

[
0 I
−I −G

]
, and R :=

[
0 0
0 C

]
.

=⇒ Examine the two terms separately :
Role of the skew-symmetric G matrix, the gyroscopic term.
Damping effect is ensured, provided that C = CT ≥ 0.
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ODEs A short word on dissipation?

Ex 1: about the G matrix

1 This matrix is often not considered in modelling processes of
damping! Why?
When C = 0, whatever G = −GT , the system proves conservative:
d
dt H0(X(t)) = 0!

2 Is it a naive generalizations due to mathematicians? No!
Classical mechanical example: Coriolis force f = ω ∧ ẋ, with
rotational speed ω = (p, q, r)T , f = Gω ẋ where

Gω :=

 0 −r q
r 0 −p
−q p 0

 is skew symmetric.

3 Also in electromagnetics: Lorentz force in a uniform magnetic
field.
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ODEs A short word on dissipation?

Open Systems with Damping, Energy Balance (2)

The port-Hamiltonian system (pHs) is defined by:

Ẋ = (J − R) gradXH(X) + g(X) u(t) , (10)
y(t) = g(X)T gradXH(X) . (11)

Theorem
J skew-symmetric and R positive =⇒ the system is passive. Indeed,

d
dt

H(X(t)) = −(gradXH(X),R gradXH(X))Rn + (y(t), u(t))Rm ,

≤ (y(t), u(t))Rm .

Hence, H(X(t))− H(X0) ≤
∫ t

0(y(τ), u(τ))Rm dτ .
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PDEs

Outline

1 Finite-dimensional case: Ordinary Differential Equations
(ODEs)

Useful Tools
Closed Systems
Open Systems
A short word on dissipation?

2 Infinite-dimensional case: Partial Differential Equations (PDEs)
New Useful Tools
Closed systems
More examples in fluid mechanics!
A short word on dissipation? Navier-Stokes, at last!

3 Sloshing? a typical Fluid-Structure Interaction in Aeronautics!
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PDEs New Useful Tools

Useful Notions in Infinite Dimension

These notions will be of major help in the following:
functions u, instead of vectors X,
an infinite-dimensional Hilbert functional space H for functions,
instead of a finite-dimensional Euclian vector space R2n,
a Hamiltonian functional H, defined on functions u, instead of a
Hamiltonian function defined on vectors, e.g.:

H : H → R

u 7→ H(u) :=
1
2

∫ L

0
u(z)2 dz
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PDEs New Useful Tools

Useful Tools in Infinite Dimension

These tools will be of major help in the following:
the variational derivative of a functional: δXH, in place of the
gradient of the function, defined by

H(u + εw) = H(u) + ε (δuH, w)H + O(ε2)

N.B. in the above easy example, δuH = u.
formally skew symmetric operators: J T = −J , w.r.t the scalar
product in the Hilbert space H, i.e.

(u, J v)H = −(J u, v)H

in the special case of quadratic Hamiltonian, hence
linear dynamical systems Ẋ = AX: semigroups3.

3come on June, 4th, to ROMA Seminar by Ghislain Haine!
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PDEs Closed systems

Ex 3: Webster horn equations (1)

• the energy variables are: density ρ, and particle velocity v,
• with pressure p := c2

0 ρ, and energy density U(ρ) :=
c2

0
2 ρ2

0
ρ2, let us

define the Hamiltonian:

H(ρ, v) :=

∫ L

0

(
1
2
ρ0v2 + ρ0U(ρ)

)
S(z) dz,

• the co-energy variables are: δρH = ρ0 U′(ρ) = 1
ρ0

p and δvH = ρ0 v, •
then, the corresponding port-Hamiltonian system is given by

d
dt

[
ρ
v

]
=

[
0 − 1

S∂z
(
S ·
)

−∂z 0

] [
δρH
δvH

]
. (12)

• The wave equations which govern the acoustic pressure p and the particle velocity v are given by, respectively:

1

c2
0

∂
2
t p(z, t) −

1

S(z)
∂z
[
S(z)∂zp(z, t)

]
= 0, (13)

1

c2
0

∂
2
t v(z, t) − ∂z

[ 1

S(z)
∂z
[
S(z)v(z, t)

]]
= 0, (14)
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PDEs Closed systems

Ex 4: compressible Euler equations

Consider an inviscid, irrotational and isentropic fluid, in Ω ⊂ R3:

d
dt
ρ = −div(ρ v) (15)

d
dt

v = −(v.grad)v− 1
ρ

gradp . (16)

Following e.g. [van der Schaft & Maschke, 2001],
Energy variables: ρ, v,
Hamiltonian: H(ρ, v) :=

∫
Ω

(1
2ρv.v + ρU(ρ)

)
dV,

Co-energy variables: δρH = 1
2 v.v + h(ρ) and δvH = ρ v,

Dynamical system in standard form:

d
dt

[
ρ
v

]
=

[
0 −div

−grad 0

] [
δρH
δvH

]
;
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PDEs Closed systems

Definitions for pHs (1)

Consider the dynamical system

d
dt

X(z, t) = (J ) δXH(X) (17)

with (quadratic) Hamiltonian :

H(X) =
1
2

∫ L

0
X(z, t)TLX(z, t) dz ,

and (linear) variational derivative :

δXH(X) = LX(z, t) .

We suppose that operator J is formally skew-symmetric.
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PDEs Closed systems

Definitions for pHs (2)

The energy balance associated to this system is:

dH
dt

(t) =

∫ L

0
δXH(X).

dX
dt

dz ,

=

∫ L

0
δXH(X).(J ).δXH(X) dz ,

= 0 , since J is skew-adjoint? Almost!

For the horn equation, say with uniform cross-section S(z) = S,

dH
dt

(t) =

∫ L

0
(−e1 ∂ze2 − e2 ∂ze1) dz ,

=

∫ L

0
−∂z(e1 e2) dz ,

= e1(0) e2(0)− e1(L) e2(L) .

=⇒ Energy flows through the boundary, only!
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PDEs More examples in fluid mechanics!

More involved examples in fluid mechanics

Some more specific Hamiltonian models for fluid mechanics are
available for:

potential flow (irrotational fluid), with the use of the stream
function
incompressible fluid (very difficult: an infinite-dimensional
Differential Algebraic Equation!), with the constraint div(v) = 0,
make use of the vorticity vector ω := curl(v).

=⇒ read the book by [Olver, 1993]
=⇒ come and talk with me, since I have read the book for you!
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PDEs A short word on dissipation? Navier-Stokes, at last!

Definitions for pHs (1)

Consider the dynamical system

d
dt

X(z, t) = (J −R) δXH0(X) (18)

with (quadratic) Hamiltonian :

H0(X) =
1
2

∫ L

0
X(z, t)TLX(z, t) dz ,

and (linear) variational derivative :

δXH0(X) = LX(z, t) .

We suppose that
operator J is formally skew-symmetric,
operator R is positive self-adjoint.
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PDEs A short word on dissipation? Navier-Stokes, at last!

Definitions for pHs (2)

The energy balance associated to this system is:

dH0

dt
(t) =

∫ L

0
δXH0(X).

dX
dt

dz ,

=

∫ L

0
δXH0(X).(J −R).δXH0(X) dz ,

= −
∫ L

0
δXH0(X).R.δXH0(X) dz ,

≤ 0 .

But when R 6= 0, no underlying Dirac structure is to be found for this
damped system, with efforts e := δXH0(X) and flows f := dX

dt , linked by
f = J e.
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PDEs A short word on dissipation? Navier-Stokes, at last!

Ex 5: compressible Navier-Stokes

Consider an irrotational and isentropic fluid, in Ω ⊂ R3:

d
dt
ρ = −div(ρ v) (19)

d
dt

v = −(v.grad)v− 1
ρ

gradp +
1

Re
∆v . (20)

Still following [van der Schaft & Maschke, 2001],
Energy variables: ρ, v,
Hamiltonian: H :=

∫
Ω

(1
2ρv.v + ρU(ρ)

)
dV,

Co-energy variables: δρH = 1
2 v.v + h(ρ) and δvH = ρ v,

Dynamical system in standard form:

d
dt

[
ρ
v

]
=

[
0 −div

−grad 0

] [
δρH0
δvH0

]
−
[

0 0
0 C

] [
δρH
δvH

]
;
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PDEs A short word on dissipation? Navier-Stokes, at last!

Ex 5: compressible Navier-Stokes

With C = − 1
Re∆. It has the desired (J −R) form:

J is a skew-symmetric operator, since the formal adjoint of div is
−grad,
R is a symmetric and positive operator, since −∆ is.

=⇒ more important, the parametrization R = GSG∗ is very easily
found to be:

G :=

[
0

grad

]
, G∗ =

[
0 −div

]
, and S :=

1
Re

I .
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Sloshing: FSI in Aeronautics

Outline

1 Finite-dimensional case: Ordinary Differential Equations
(ODEs)

Useful Tools
Closed Systems
Open Systems
A short word on dissipation?

2 Infinite-dimensional case: Partial Differential Equations (PDEs)
New Useful Tools
Closed systems
More examples in fluid mechanics!
A short word on dissipation? Navier-Stokes, at last!

3 Sloshing? a typical Fluid-Structure Interaction in Aeronautics!
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Sloshing: FSI in Aeronautics

and now? the show must go on!

Let us welcome: Flávio Ribeiro!
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