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Abstract: This work addresses a mathematical formulation to model highly flexible airplanes. A toolbox was developed
and can be used to analyze how structural flexibility affects the airplane flight dynamics. A nonlinear beam model was
applied to represent the structural dynamics, taking into account large displacements. For aerodynamic calculations, the
strip theory was used including three modeling approaches: a quasi-steady, quasi-steady with apparent mass and full
unsteady aerodynamics representations. Nonlinear simulations are performed and, through linearization of the equations
of motion, dynamic stability is analyzed.
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1. INTRODUCTION

Although all airplanes are flexible, rigid body assumption is very usual during the studies of flight dynamics. The
effects of flexibility are usually taken into account by the discipline of aeroelasticity. This separation between aeroelas-
ticity and rigid body flight dynamics used to be enough to describe these phenomena, but recent progress in aeronautical
engineering with the advent of lighter structural materials has led to more flexible airplanes and urged the development of
complete flight dynamics models including structural flexibility effects.

Waszak and Schmidt (1988) described dynamic equations of motions that include a linearized structural model. This
approach can be used to study the influence of small structural deflections in the rigid body flight dynamics. Silvestre and
Paglione (2008), Pogorzelski (2010) and Silva et al. (2010) used this formulation to study the flight dynamics and control
of flexible airplanes. Among their hypothesis, these works neglect the inertial coupling between rigid body and flexible
modes.

The recent development of High-Altitude Long-Endurance (HALE) airplanes increased even more the need for appro-
priate modeling of highly flexible aicrafts: since they have very high aspect ratio and low structural rigidity, their wings
present large structural deflections as it can be seen in Figure 1.

Patil (1999) used a nonlinear beam model from Hodges (1990) to describe the flight dynamics of highly flexible air-
planes. Brown (2003) modified the formulation, rewriting the equations in a strain-based form; he developed a framework
for studying of wing warping as a means of achieving aeroelastic goals. Subsequently, Shearer (2006) improved the mo-
deling, replacing numerical iterative calculations by closed form expressions. Su (2008) included absolute and relative
nodal displacement constraints, allowing the study of Joined-Wing configurations.

AeroFlex is a toolbox that intends to implement the formulations of Brown (2003) and Shearer (2006), allowing the
study of highly flexible airplanes flight dynamics. Among its main capabilities:

• Simulation and stability analysis of classic wing aeroelastic phenomena like: divergence, flutter, aileron reversals;

• Simulation and stability analysis of nonlinear wing aeroelastic phenomena, due to nonlinear geometry deflections;

• Simulation and stability analysis of a flexible aircraft in free-flight condition.

The main goal of this work is to present the implementation of AeroFlex. The equations of motion are presented in
Section 2. Section 3 describes how the equations are solved. Section 4 presents the AeroFlex computational environment.
Section 5 shows the results of several studies performed using the toolbox with the goal of validating it. These results are
compared with test cases presented in the literature.
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Figure 1: NASA Helios - Ref. Noll et al. (2004).

2. THEORETICAL FORMULATION

The equations of motion can be obtained from the principle of virtual work. The deduction is presented by Brown
(2003), Shearer (2006), Su (2008) and Ribeiro (2011).

A three-dimensional structural model is decomposed in a bidimensional (cross-sectional) analysis. The results from
the cross-section can be used to analyze a unidimensional beam. Each flexible structural member of the airplane is treated
as a beam. These beams are split in several elements, each one can undergo deformations of extension, flexion and
torsion. The deformations vector ε represents the deformation of each structural element. Linear and rotational speeds are
represented by β.

The following equations of motion represent both the rigid body motion and the structural dynamics.

[
MFF MFB

MBF MBB

] [
ε̈

β̇

]
+

[
CFF CFB
CBF CBB

] [
ε̇
β

]
+

[
KFF 0
0 0

] [
ε
~b

]
=

[
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]
(1)

where:
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[
0

RextRB

]
(3)

In Eq. 1, Mij represents the mass matrix; Ci,j represents the damping matrix; KFF represents the structural rigidity
matrix. It’s possible to see that rigid body states (represented by β) are inertially coupled with structural states (ε), since
the mass matrix is not diagonal.

RF andRB represents the generalized forces that are applied in the airplane. They are obtained from the aerodynamic,
gravitational and propulsive forces applied to each structural node. Strip theory is applied, so that aerodynamic forces and
moments are calculed using bidimensional models in each node. The aerodynamic models are presented in Section 2.1.

The Jacobian matrices Jhε and Jθε represent the relationship between structural deformations (ε) and nodal displace-
ments and rotations. Jhb and Jθb represent the relationship between rigid body degrees of freedom and nodal displace-
ments and rotations. The Jacobian matrices are nonlinear functions of ε. They can be obtained either numerically (through
numerical linearization), or through analytical expressions as presented by Shearer (2006). This work uses the latter.

In addition, M is the flexible structure mass matrix. It depends only on inertias and masses of the structural elements
(it is not dependent on strain, differently from the Mij matrix). K is the structural rigidity matrix and C is the structural
damping matrix. In AeroFlex, we usually uses a linear relationship between C and K, given by:

C = cK (4)

where c is the damping ratio.
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Euler angles are used to describe the airplane attitude (φ,θ and ψ, which are used to describe the bank, pitch and
heading angles). Stevens and Lewis (2003) show that the time rate derivative of Euler angles are related with angular
speeds (P ,Q,R) by the following expressions:

θ̇ =Q cosφ−R sinφ (5)

φ̇ =P + tan θ (Q sinφ+R cosφ) (6)

ψ̇ =
(Q sinφ+R cosφ)

cos θ
(7)

Stevens and Lewis (2003) also presents the relationship between speeds in the Body Frame (given by U,V,W) and
Inertial Frame (given by Ḣ , ẋ and ẏ):

Ḣ =U sin θ − V sinφ cos θ −W cosφ cos θ (8)
ẋ =U cos θ cosψ + V (sinφ sin θ cosψ − cosφ sinψ) +W (cosφ sin θ cosψ + sinφ sinψ) (9)
ẏ =U cos θ sinψ + V (sinφ sin θ sinψ + cosφ cosψ) +W (cosφ sin θ sinψ − sinφ cosψ) (10)

2.1 Aerodynamic Models

The aerodynamic model is included through bidimensional forces and moments distributed along the beams. In this
work, strip theory is used: aerodynamic forces and moments are calculated in each node considering an independent
two-dimensional aerodynamic model.

Once aerodynamic forces (drag and lift) and moment are calculated; forces and moments are transformed from the
local aerodynamic frame to body frame. The force vectors are then arranged in a 9N vector (where N is to number of
elements). These vectors, of distributed forces and moments, are then applied to Eq. 3.

Three different models were used to calculate aerodynamic forces. The first consists in a quasi-steady model, which
takes into account only the circulatory part of lift force, neglecting the wake effects. The second model includes the
apparent mass terms. Finally, the third model is an unsteady aerodynamic model proposed by Peters et al. (2007), which
includes states to represent the aerodynamic lag due the wake.

2.1.1 Quasi-steady

The following equations can be used to calculate the aerodynamic lift and moment around the elastic center for a flat
plate (Ref. Haddadpour and Firouz-Abadi (2006)):

L =2πρbU2

[
ḣ

U
+ b(0.5− a)

α̇

U
+ α

]
(11)

Mea =b(0.5 + a)L− πρUb3

2
α̇ (12)

In these equations, ρ is the air density; U is the airspeed; α is the local angle of attack; b is the airfoil semichord; and
a is the distance between elastic axis and the half chord (normalized by the semichord b). It is possible to rewrite these
equations as a function of relative speeds written in the zero-lift coordinate system1.

L =2πρbẏ2
[−ż
ẏ

+ b(0.5− a)
α̇

ẏ

]
(13)

Mea =b(0.5 + a)L− πρẏb3

2
α̇ (14)

2.1.2 Quasi-steady with apparent mass

The following equations include the apparent mass effect (Ref. Haddadpour and Firouz-Abadi (2006)):

L =πρb2
[
ḧ− baα̈+ Uα̇

]
+ 2πρbU

[
ḣ+ b(0.5− a)α̇+ Uα

]
(15)

Mea =b(0.5 + a)L− πρb3
[
0.5ḧ+ b(0.125− 0.5a2)α̈+ Uα̇

]
(16)

Again, it is possible to rewrite the equations as a function of variables written in the zero-lift coordinate system.

L =πρb2(−z̈ + ẏα̇− dα̈) + 2πρbẏ2
[
− ż
ẏ
+

(
1

2
b− d

)
α̇

ẏ

]
(17)

Mea =b(0.5 + a)L− πρb3
[
−0.5z̈ + b(0.125− 0.5a2)α̈+ ẏα̇

]
(18)

1In the zero-lift coordinate system, y axis is parallel to the airfoil’s zero-lift axis. The z axis is perpendicular, pointing upwards. The speeds in this
coordinate system are represented here by ż and ẏ.
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2.1.3 Unsteady

An unsteady aerodynamic model based on Peters et al. (1995) is applied. Expressions for lift and drag are presented
by Shearer (2006):

L =πρb2(−z̈ + ẏα̇− dα̈) + 2πρbẏ2
[
− ż
ẏ
+

(
1

2
b− d

)
α̇

ẏ
− λ0

ẏ

]
(19)

Mea =Ld+ 2πρb2
(
−1

2
ẏż − 1

2
dẏα̇− 1

2
ẏλ0 −

1

16
b2α̈

)
(20)

where λ0 consists in:

λ0 ≈ 1

2

N∑
n=1

bnλn (21)

where bn can be obtained from the following expression (Ref. Peters et al. (1995)):

bn =(−1)n−1
(NA + n− 1)!

(NA − n− 1)!

1

(n!)2
1 < n < NA − 1

bNA =(−1)NA+1 (22)

The lag states λn can be obtained from the following system of differential equations:

λ̇ = E1λ+ E2z̈ + E3α̈+ E4α̇ (23)

On above axpressions, NA is the number of aerodynamic lag states.λn; E1, E2, E3 e E4 are matrices presented in
Ref. Balvedi (2010).

2.1.4 Drag

In the previous modelling approaches, the drag is calculated using a constant airfoil drag coefficient (Cd0):

D =
1

2
ρẏ2Cd0 (24)

2.1.5 Including trailing edge flap deflections

Trailing edge deflection is implemented by adding incremental values to the airfoil aerodynamic forces and moments:

L′ = L+ Lδ (25)

M ′ =M +M δ (26)

where:

Lδρbẏ2CL,δδu (27)

Mδ = ρb2Cm,δδu (28)

CL,δ and Cm,δ can be obtained through experimental data or airfoil analysis softwares. δu is the airfoil flap deflection.

2.2 Control inputs

Two types of control inputs are used in this modelation:

• Flap deflections δi (as presented in the previous section);

• Engine throttle πi

Propulsion forces are modeled as point forces attached to a structural node.
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3. SOLVING EQUATIONS, LINEARIZATION AND STABILITY

The elastic equations of motion (Eq. 1), the unsteady aerodynamic equations (Eq. 23) and the kinematics equations
(Eqs. 5, 6, 7, 8, 9 and 10) represent all the needed expressions to describe the flight dynamics of the flexible airpla-
nes. These are 4N second order differential equations to describe the structural dynamics, 3NNA first order differential
equations to describe the lag aerodynamic states and 12 first order equations to describe the rigid body motion 2.

Following, the methodologies used to find the equilibrium condition, integrate and linearize the equations of motion
are presented.

3.1 Calculation of equilibrium

The determination of equilibrium condition in the case of the full airplane is done by the following iterative procedure:

1. Consider ε = 0;

2. Calculate the rigid body equilibrium (β̇ = 0)3;

3. Calculate the structural equilibrium (ε̈ = 0)4;

4. Return to item 2 until both conditions are valid (β̇ = 0 e ε̈ = 0).

In the case of a straight level flight, for example, a specific flight condition is given (altitude, speed and angle of
trajectory). Step 1 finds the engine throttle π, the elevator angle δ and the pitch angle θ. Step 2 finds the structural
deformations ε. Each step is found by using numerical methods.

3.2 Integration of the nonlinear equations of motion

We have a large system of differential equations (Eqs. 1, 23, 5, 6, 7, 8, 9 and 10). Eq. 1 is a second order system of
equations. To solve these equations we could try to convert this system in a first order system. Unfurtunately, this is not
usually possible, since aerodynamic force expressions are nonlinear functions of the states’ time rate. So two options are
avaiable:

• Neglect the derivative terms from aerodynamic expressions and transform the system of equations into a first order
system. This lead to a system of equations that can be integrated using classic explict methods (like Runge-Kutta
methods);

• Integrate the second order system of equations using an implicit method.

The second option, though usually slower, is obviously the most precise.

3.3 Linearization and stability

It is possible to linearize the equations of motion with the goal of studying the stability of the flexible airplane. The
system of equations can be represented in the following form:

f(ε, ε̇, ε̈, λ, λ̇, β, β̇,~k, ~̇k, δu,i, πi) = 0 (29)

where f is a nonlinear function which dimension is equal to the total number of system’s states. ~k is the vector of
kinematics variables:

~k =
[
φ θ ψ H

]
(30)

It is possible to reduce it to a first order system (making X = ε̇) and linearize it around a equilibrium point:

M


˙̃X
˙̃ε

λ̇
˙̃
k

 = A


X̃
ε̃
λ

k̃

+B
[
δ̃u,i π̃i

]
(31)

The linearization is done numerically. By analysing the eigenvalues of M−1A, we can verify if the system is stable.
Choosing subsets of matrices M and A, it is possible to decouple the rigid body and structural dynamics. This allows, in a
single process of linearization, determine the stability characteristics and autonomous response of the following systems:

2Where N is the total number of structural elements; NA is the number of lag states in each node
3See that in the equilibrium: MBB β̇ = RB . So: β̇ = 0 is equivalent to RB = 0. Where RB is the sum of external forces, which is also a function

of ε.
4We calculate ε so that KFF ε = RF . Remember that RF is a function of ε.
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• Rigid body;

• Cantilevered wing;

• Flexible airplane in free flight.

To determine the instability speed (flutter, divergence or other), the following procedure is applied: the airplane speed
is increased; for each speed, a new equilibrium condition is obtained; the system is linearized; the largest real part of the
eigenvalues ofM−1A is taken. Once one of the eigenvalues has a positive real part, the system is unstable. The imaginary
part of this eigenvalue gives the frequency associated with the unstable aeroelastic mode.

4. CODE IMPLEMENTATION

AeroFlex is intended to perform the following tasks:

• Implement the strain-based geometrically nonlinear beam structural dynamics model proposed by Brown (2003)
and the improvements proposed by Shearer (2006);

• Allow the study of airplanes with the following characteristics:

- Rigid fuselage and flexible members (wings, horizontal and vertical tail);

- Rigid concentrated mass/inertia elements attached to the flexible structure’s nodes (to represent engines or
fuel tanks for example);

- Propulsive forces attached to the flexible structure’s nodes.

• Determine the equilibrium point, considering the structural deformations;

• Linearize the equations of motion, allowing the dynamic stability study;

• Simulate the linear and nonlinear dynamics, using several numerical integration methods.

The code is intended to be very general, allowing the user to define new configurations easily. The authors chose to
write the AeroFlex code using the Matlab R©5.

4.1 Initializing the airplane data

AeroFlex was developed using object-oriented programming. Several classes were defined, in order to initialize and
update the various data types that should be handled by the program. The four most important classes of this tool are the
following: node, element, engine, airplane.

To initialize the airplane modelling, the user needs the following information: masses and inertias per unit of lenght
at each structural node; rigidity and damping matrices of each element; lengh of each element and relative orientation
beetwen one element and the next one. These data are obtained from the airplane geometry and from a cross-sectional
analysis software. Additionaly, the user needs the aerodynamic data of each node (zero-lift angle of attack, Clα , Cm0 ,
number of lag-states, etc.).

Once all airplane properties are known, the following procedure should be done by the user:

1. Create node objects. Each object is a structural node and needs to be initialized with the mass and inertia data.
These objects also have the information about the aerodynamic model (since the aerodynamic calculations are done
in each node);

2. Create vectors of element objects. Each vector is a flexible member. Each unit of this vector is an element and it
is associated with three node objects. These objects includes the rigidity and damping properties, associated with
each element. The user can create how many flexible members are needed to describe the airplane;

3. Create engine objects. Each object of this class is an engine. To initialize this object, the user gives informations
about the engine’s position and about the propulsive model.

4. Create one airplane object. This object covers all the airplane data. Their input arguments are: vectors of element
objects (members) and engine objects. In addition, the user can start this object with rigid fuselage data, if it exists.

Following this procedure, the user will have an object of the airplane class, which includes all the structural, aerodyna-
mical and propulsive data of the airplane. This object allows the use of methods for calculating equilibrium; linearization;
simulation and others. These methods are presented in the next items.

5Matlab 2010a, The MathWorks, Natick, MA
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Figure 2: Example of airplane modeled in AeroFlex.

4.2 Equilibrium methods

One of the airplane class functions is the trimairplane. This function’s goal is to calculate the structural and rigid
body equilibrium given a straight flight condition (altitude and speed). The deformations vector ε, the elevator angle, the
pitch angle and the throttle are the outputs for this function.

The methodology to find equilibrium is described in Section 3.1. AeroFlex uses FSOLVE Matlab function to solve the
nonlinear equations.

4.3 Linearization method

The function linearizeairplane has the following input arguments: an airplane object and equilibrium conditions
around which the linearized matrices should be calculated. The following outputs are presented by this function: A and
B matrices of the full linearized system; in addition, matrices Aaeroelast e Abody are the linearized system neglecting
the rigid body and flexible degrees of freedom, respectively. Analyzing the eigenvalues of each of these matrices, it is
possible to study the system stability.

Linearization is performed numerically as presented in Section 3.3.

4.4 Nonlinear simulation method

The function simulate is also a method of airplane class. It is intended to simulate the nonlinear dynamics. Its input
arguments are: the airplane object; initial conditions; function handles to describe the engine throttle and elevator inputs
as a function of time; integration method (implicit or explicit).

To integrate the equations of motion, the ODE15i and ODE15s Matlab functions are used (implicit and explicit metho-
dologies, respectively).

4.5 Graphical outputs methods

The outputs of the simulation routines are vectors of the system’s states for each instant of time (strain ε, linear and
angular speeds ~β, position and orientation of the body frame ~k and lag states λ). A function called airplanemovie was
created allowing the presentation of a video with the airplane deflections along the time from the simulation results. The
input arguments for it are: the airplane object; a time vector; a strain vector for each instant of time.

Additionally, the function plotairplane3d presents a 3D figure of object airplane. Figure 2 shows an example of this
graphical output.

5. RESULTS

In order to validate the toolbox, several results were obtained and compared with literature. AeroFlex was used to
solve structural problems; aeroelastic problems; and to make comparisons with rigid body flight dynamics. More results
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can be found in Ribeiro (2011).

5.1 Structural Problems

A simple cantivelered beam was modeled, as proposed by Ref. Brown (2003). Concentrated forces and moments were
applied, as presented in Figure 3. Results show good agreement between this tool and the literature results, as shown in
Figure 4.

Figure 3: Cantilevered beam with a force applied - Ref. Brown (2003).
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Figura 4: Deflection of tip as a result of a force

5.2 Aeroelasticity

Two test cases presented in the literature were analyzed, with the goal of finding the flutter speed and frequency of
cantilevered wings. In order to get these results, it is necessary to find the equilibrium condition for several different
speeds, linearize the equations of motion and get the eigenvalues of the state matrix. Once at least one of the eigenvalues
has a positive real part, the system is unstable. We can get the frequency of the unstable modes from the imaginary part
of this eigenvalue (if it is oscilatory).

The first test case results are for the Goland wing (Ref. Goland (1945)) and can be seen in Table 1. After that, we
show the results for a highly flexible wing, as proposed by Patil (1999). Due to its highly flexible nature, this wing shows
an interesting result: if we study instability around an undeformed shape, very different results than those of a deformed
shape are obtained (Fig. 5). Results are shown in Tables 2 and 3.

Tabela 1: Flutter speed and frequency for the Goland Wing

Altitude

Results

AeroFlex Ref.Brown (2003)

V f V f
(ft/s) (rad/s) (ft/s) (rad/s)

0 ft 451 71.2 447 69.7
20× 103 ft 581 69.7 574 68.1

Figure 4: Deflection of tip as a result of a force.
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Figure 5: Highly Flexible Wing.

Table 2: Flutter speed and frequency for the highly flexible wing - undeformed wing.

AeroFlex Ref. Patil (1999)
Speed (m/s) 32.6 32.2

Frequency (rad/s) 22.6 22.6

Table 3: Flutter speed and frequency for the highly flexible wing - deformed wing.

AeroFlex Ref. Su (2008)
Speed (m/s) 23.4 23.2

Frequency (rad/s) 12.2 10.3

5.3 Flight Dynamics

In order to check if the flight dynamics simulated by AeroFlex agrees with a rigid body classical model (as of Ref.
Stevens and Lewis (2003)), we’ve modeled a flying wing (Figure 6). Results for a doublet input in the elevator are
presented in Fig. 7. For the very rigid airplane (K=1000), the results of AeroFlex and the rigid body dynamics are very
similar. On the other hand, for a highly flexible airplane (K=1), we can see the coupling between structural and flight
dynamics responses.
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Figure 6: Flying wing.

6. CONCLUSIONS

This work presented the implementation of AeroFlex, a computational tool that allows the study of highly flexible
airplane flight dynamics. This tool was used to study several test cases, from static structural problems to flight dynamics
of flexible vehicles. Results obtained are very similar from those of the literature.

The methodology used is more suitable for studying airplanes with high aspect ration lifting surfaces, since it uses
strip theory for aerodynamics and beam theory for structural dynamics. Ir order to study low aspect ratio wings, a
threedimensional aerodynamic model would be necessary.



V I I C o n g r e s s o N a c i o n a l d e E n g e n h a r i a M e c â n i c a, 3 1 d e j u l h o a 0 3 d e A g o s t o 2 0 1 2, S ã o L u í s - M a r a n h ã o
V I I C o n g r e s s o N a c i o n a l d e E n g e n h a r i a M e c â n i c a, 3 1 d e j u l h o a 0 3 d e A g o s t o 2 0 1 2, S ã o L u í s - M a r a n h ã o

0 2 4 6 8 10
−10

−5

0

5

10

15

20

Time (s)

A
n
g
le

 o
f 
a
tt
a
c
k
 (

d
e
g
)

 

 

Rigid body

AeroFlex − K=1000

AeroFlex − K=1

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time (s)

P
it
c
h
 r

a
te

 (
ra

d
/s

)

 

 

Rigid body

AeroFlex − K=1000

AeroFlex − K=1

Figura 7: Simulated response for a doublet input in the elevator

7. REFERENCES

Balvedi, E.A., 2010. Linear and Nonlinear Aeroelastic Analyses of a Typical Airfoil Section With Control Surface Free-
play. Mestrado em engenharia aeronáutica e mecânica, Instituto Tecnológico de Aeronáutica, São José dos Campos.

Brown, E.L., 2003. Integrated Strain Actuation In Aircraft With Highly Flexible Composite Wings. Dissertation for a
doctoral degree, Massachusetts Institute of Technology.

da Silva, A.L., Paglione, P. and Yoneyama, T., 2010. “Conceptual flexible aircraft model for modeling, analysis and
control studies”. In Proceedings... Atmospheric Flight Mechanics Conference, AIAA, Reston, VA.

Goland, M., 1945. “The flutter of a uniform cantilever wing”. Journal of Applied Mechanics, Vol. 12, No. 4, pp. A197–
A208.

Haddadpour, H. and Firouz-Abadi, R.D., 2006. “Evaluation of quasi-steady aerodynamic modeling for flutter prediction
in subsonic flow”. Journal of Thin-Walled Structures, Vol. 44, No. 9, pp. 931–936.

Hodges, D., 1990. “A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams”.
International journal of solids and structures, Vol. 26, No. 11, pp. 1253–1273.

Noll, T., Brown, J., Perez-Davis, M., Ishmael, S., Tiffany, G. and Gaier, M., 2004. Investigation of the helios prototype
aircraft mishap. NASA. Disponível em: <http://www.nasa.gov/pdf/64317main_helios.pdf>. Acesso em: 29.10.2011,
Washington,DC.

Patil, M.J., 1999. Nonlinear Aeroelastic Analysis, Flight Dynamics, and Control of a Complete Aircraft. Dissertation for
a doctoral degree, Georgia Institute of Technology.

Peters, D.A., Hsieh, M.c.A. and Torrero, A., 2007. “A state-space airloads theory for flexible airfoils”. JOURNAL OF
THE AMERICAN HELICOPTER SOCIETY, Vol. 52, No. 4, pp. 329–342.

Peters, D., Karunamoorthy, S. and Cao, W., 1995. “Finite state induced flow models. i: Two-dimensional thin airfoil”.
Journal of Aircraft, Vol. 32, No. 2, pp. 313–322.

Pogorzelski, G., 2010. Dinâmica de Aeronaves Flexíveis Empregando Teoria das Faixas Não-Estacionária. Mestrado em
engenharia aeronáutica e mecânica, Instituto Tecnológico de Aeronáutica, São José dos Campos.

Ribeiro, F.L.C., 2011. Dinamica de voo de aeronaves muito flexiveis. Master of science thesis, Instituto Tecnologico de
Aeronautica.

Shearer, C.M., 2006. Coupled Nonlinear Flight Dynamics, Aeroelasticity and Control of Very Flexible Aircraft. Disserta-
tion for a doctoral degree, The University of Michigan, Ann Arbor.

Silvestre, F. and Paglione, P., 2008. “Dynamics and control of a flexible aircraft”. In Proceedings... Atmospheric Flight
Mechanics Conference and Exhibit, AIAA, Reston, VA.

Stevens, B. and Lewis, F., 2003. Aircraft control and simulation. Wiley-Interscience, Hoboken, New Jersey.
Su, W., 2008. Coupled Nonlinear Aeroelasticity and Flight Dynamics of Fully Flexible Aircraft. Dissertation for a doctoral

degree, The University of Michigan, Ann Arbor.
Waszak, M.R. and Schmidt, D.K., 1988. “Flight dynamics of aeroelastic vehicles”. Journal of Aircraft, Vol. 25, No. 6.

8. RESPONSIBILITY NOTICE

The authors are the only responsible for the printed material included in this paper.

Figure 7: Simulated response for a doublet input in the elevator.
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