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Abstract: The interactions between fluid and structural dynamics are an important subject of
study in several engineering applications. In airplanes, for example, these coupled vibrations can
lead to structural fatigue, noise and even instability. At ISAE, we have an experimental device
that consists of a cantilevered plate with a fluid tank near the free tip. This device is being used
for model validation and active control studies. This work uses the port-Hamiltonian systems
formulation for modeling this experimental device. Structural dynamics and fluid dynamics are
independently modeled as infinite-dimensional systems. The plate is approximated as a beam.
Shallow water equations are used for representing the fluid in the moving tank. The global
system is coupled and spatial discretization of the infinite-dimensional systems using mixed
finite-element method allows to obtain a finite-dimensional system that is still port-Hamiltonian.
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1. INTRODUCTION

The coupling between structural dynamics and fluid dy-
namics is a major concern in several engineering applica-
tions. A popular example is the aerodynamics and struc-
tural dynamics coupling which can lead to instability and
structural failure in systems as diverse as airplanes and
suspension bridges.

This paper is part of ongoing research on fluid-structure
modeling and control. We have an experimental set up
at ISAE, which consists of an aluminium plate with a
water tank near the free tip. The fluid dynamics and struc-
tural dynamics have similar natural vibration frequencies,
leading to strong dynamic coupling between them. Piezo-
electric patches are used for active control. A schematic
representation of the system is presented in Fig. 1.

In this work, port-Hamiltonian systems (PHS) formulation
is used in order to model this device. The motivation for
using this formulation is that it is possible to describe each
element of the system separately using PHS formulation.
Physically relevant variables appear as interconnection
ports and the several subsystems can be coupled, guar-
anteeing that the global system is also a PHS. Finally,
energy-based methods can be used for control purposes,
see Duindam et al. (2009).

The plate is simplified as a 1D-beam with bending and tor-
sion modeled independently. Linear Euler-Bernoulli equa-
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Fig. 1. Experimental set up schematic representation

tion is used for beam bending and wave equation for beam
torsion. For the fluid dynamics, previous work on shallow
water equations (as Hamroun et al. (2010)) was extended
to include rigid body motion variables. In addition, (finite-
dimensional) rigid body equations is used to include the
dynamics of the rigid tank. Each subsystem is presented
in Section 2.

The global system consists in three infinite-dimensional
port-Hamiltonian subsystems and three finite-dimensional
ones. Using kinematic and force/moment constraints, all
subsystems are coupled in Section 3. Since no dissipation is
taken into account in any of the components, the coupled
system is proved to be power-conserving.

Then, the mixed finite-element method is used to perform
spatial discretization of the system, as presented in Sec-
tion 4. This leads to finite-dimensional port-Hamiltonian
systems, with input/output ports that are directly related



to the interconnection structure. Using the coupling con-
straints, the discretized system is finally written in linear
descriptor form.

2. MODELING

2.1 Beam equations - bending

The simplest mathematical representation of beam vibra-
tion in bending is given by the Euler-Bernoulli equation:

µ(z)
∂2

∂t2
w(z, t) = − ∂2

∂z2

(
EI(z)

∂2

∂z2
w(z, t)

)
, (1)

where w(z, t) is the deflection at point z and time t, µ is
the beam mass per unit length and E is Young modulus,
I the section inertia.

Defining the energy variables as: xB1 (z, t) := ∂2w
∂z2 and

xB2 (z, t) := µ∂w∂t , we have the following Hamiltonian:

HB(xB1 , x
B
2 ) =

1

2

∫ L

z=0

(
EI(xB1 )2 +

1

µ
(xB2 )2

)
dz, (2)

where 1
2

∫ L
z=0

(
EI(xB1 )2

)
dz is the elastic potential energy

and 1
2

∫ L
z=0

(
1
µ (xB2 )2

)
dz is the kinetic energy.

The variational derivative of H, with respect to xB1 and xB2
is given by:

eB1 (z, t) :=
δHB

δxB1
= EIxB1 = EI

∂2w

∂z2
, (3)

eB2 (z, t) :=
δHB

δxB2
=
xB2
µ

=
∂w

∂t
, (4)

where eB1 and eB2 are the effort (or co-energy) variables:

eB1 is the local bending moment (EI ∂
2w
∂z2 (z, t)) and eB2 is

the local vertical speed ∂w
∂t (z, t).

We can rewrite the Euler-Bernoulli beam equations using
these new variables as follows:

∂

∂t

[
xB1
xB2

]
=

[
0 −∂2

z2

∂2
z2 0

] [
eB1
eB2

]
. (5)

We can now compute the Hamiltonian rate of change:

ḢB =

∫ L

z=0

(
EIxB1

∂xB1
∂t

+
1

µ
xB2

∂xB2
∂t

)
dz (6)

=

∫ L

z=0

(
eB1 (

∂2eB2
∂2z

)− eB2
∂2eB1
∂z2

)
dz

=

∫ L

z=0

∂

∂z

(
eB1
∂eB2
∂z
− eB2

∂eB1
∂z

)
dz

=eB1 (L, t)
∂

∂z
eB2 (L, t)− ∂

∂z
eB1 (L, t)eB2 (L, t)+

− eB1 (0, t)
∂

∂z
eB2 (0, t) +

∂

∂z
eB1 (0, t)eB2 (0, t).

Notice that the energy exchange depends only on the
system’s boundary conditions; we define: eB1∂ := ∂

∂z e
B
1 =

∂
∂zEI

∂2w
∂z2 , the shear force, and eB2∂ := ∂

∂z e
B
2 = ∂

∂t
∂w
∂z , the

angular velocity.

In the clamped-free beam, for example, the following
boundary conditions apply:

• Clamped end: eB2 (0, t) = 0 and eB2∂(0, t) = 0;

• Free end: eB1 (L, t) = 0 and eB1∂(L, t) = 0.

In this specific case, the system is power-conserving: ḢB =
0. In our case, the flexible beam is connected to a rigid tank
with fluid, so that the free-end boundary conditions will
not be zero.

Instead of using a free-end boundary, we can specify
as boundary conditions the values of force and bending
moment applied by the connected structure. The value of
force/moment (f(t) and mB(t)) are given by:

eB1 (L, t) = mB(t) (7)

eB1∂(L, t) = f(t) (8)

The conjugate port-variables are given by the point speed
and angular velocity, respectively.

2.2 Beam equations - torsion

The equations of a beam in torsion can be approximated
by 1 :

∂

∂z

(
GJ

∂

∂z
θ(z, t)

)
= Ip

∂2

∂t2
θ(z, t), 0 ≤ z ≤ L, (9)

where θ(z, t) is the local torsional angle, z is the position
along the beam, t is time, G is the material shear constant,
J is the section torsion constant and Ip is the section
polar moment of inertia per unit length. Defining as energy
variables xT1 := ∂θ

∂z and xT2 := I ∂θ∂t , we have:

∂

∂t

[
xT1
xT2

]
=

[
0 ∂z
∂z 0

] [
eT1
eT2

]
. (10)

Where eT1 = GJxT1 = GJ ∂w∂z and eT2 =
xT1
I = ∂θ

∂t , which
are the variational derivatives of the Hamiltonian, given
by:

HT (xT1 , x
T
2 ) =

1

2

∫ L

z=0

(
GJ(xT1 )2 +

(xT2 )2

Ip

)
dz. (11)

Notice that eT1 is the moment of torsion and eT2 is the
torsion angular velocity. The time-derivative of the Hamil-
tonian can be computed as:

ḢT (xT1 , x
T
2 ) =eT1 (L, t)eT2 (L, t)− eT1 (0, t)eT2 (0, t). (12)

Again, it is possible to see that the energy flows through
the boundaries. In the fixed-free case, for example, the
following boundary conditions apply:

• Fixed end: eT2 (0, t) = 0;
• Free end: eT1 (L, t) = 0.

And the system is power conserving: ḢT = 0.

Instead of using a free-end boundary, we can specify as
boundary conditions at z = L the value of the torsion
moment applied by the connected structure. The value of
moment (τ(t)) would be an input of the system:

eT1 (L, t) = τ(t) (13)

The conjugate port-variable is given by the angular veloc-
ity at the same point.

1 This equation considers Saint-Venant theory of torsion. In ad-
dition, it is considered that torsion is uncoupled from transverse
deflection. A detailed derivation of this equation is presented by
Hodges and Pierce (2011) (section 2.3.1)



2.3 Rigid tank

Let us consider a rigid tank with three degrees of freedom,
two related to the bending motion of the beam (translation
wB(t) and rotation θB(t)), and one rotation degree of
freedom related to torsion (θT (t)).

The equations of motion are given directly by Newton’s
second law:

mRB ẅB(t) = Fext, (14)

IBRB θ̈B(t) = Mext,B, (15)

ITRB θ̈T (t) = Mext,T, (16)

where mRB is the tank mass, IBRB and ITRB are the tank
rotational inertias. Fext is the sum of forces applied to the
tank, Mext,B is the sum of moments in bending direction
and Mext,T is the sum of moments in torsion direction.

Defining the following moment variables: p := mRBẇB ,
pθB := IBRB θ̇B , and pθT := ITRB θ̇T , we can rewrite the
previous equations as:

∂
∂t

[
p
wB

]
=

[
0 −1
1 0

] [
∂pH

RB

∂wbH
RB

]
+

[
1
0

]
Fext, (17)

∂
∂t

[
pθB
θB

]
=

[
0 −1
1 0

] [
∂pθMH

RB

∂θBH
RB

]
+

[
1
0

]
Mext,B, (18)

∂
∂t

[
pθT
θT

]
=

[
0 −1
1 0

] [
∂pθTH

RB

∂θTH
RB

]
+

[
1
0

]
Mext,T, (19)

where the Hamiltonian is equal to the kinetic energy:

HRB(p, pθB , pθT ) =
1

2

(
p2

mRB
+
p2
θB

IBRB
+
p2
θT

ITRB

)
, (20)

and its rate of change is given by:

ḢRB = ẇB ṗ+ θ̇B ṗθB + θ̇T ṗθT (21)

= ẇBFext + θ̇BMext,B + θ̇TMext,T .

2.4 Sloshing fluid

The simplest infinite-dimensional approach for modeling
the sloshing fluid dynamics is the Saint-Venant equations
in 1D. These equations are obtained under the following
hypotheses: non viscous, incompressible fluid and little
depth of fluid in comparison to the tank length (for this
reason, these equations are also known as shallow water
equations). A derivation of Saint-Venant equations for
tanks under rigid-body motion is presented by Petit and
Rouchon (2002). We rewrite here the linear version as:

∂h̃

∂t
= − ∂

∂z
(h̄v) (22)

∂v

∂t
= − ∂

∂z

(
gh̃+ gzθF

)
(23)

where v(z, t) is the fluid speed at point z and time t, h̃(z, t)
is the fluid height relative to static (equilibrium) height h̄

(the total height is thus h(z, t) = h̄ + h̃(z, t)), g is the
gravity acceleration and θF (t) is the tank rotation angle.

The fluid kinetic energy is given by:

T (h̃, θF , θ̇F ) =
ρb

2

∫ a/2

−a/2
h̄
(
v2 + (zθ̇F )2

)
dz, (24)

where ρ is the fluid density, b is the tank width, a is the
tank length and θ̇F (t) is the tank rotation velocity.

The fluid gravitational potential energy is given by:

U(h̃, θF , θ̇F ) = ρbg

∫ a/2

−a/2

(
zh̃θF +

h̃2

2

)
dz, (25)

the Hamiltonian is given by HF = U + T . Defining

α1 := h̃
h̄

, the relative height, and α2 := ρh̄bv, the mass
flow rate:

HF =

∫ a/2

−a/2

(
ρbgh̄2α

2
1

2
+

α2
2

2ρh̄b
+ ρbgxh̄α1θ

)
dz

+

(∫ a/2

−a/2
ρbh̄z2dz

)
︸ ︷︷ ︸

If

θ̇2
F

2
(26)

Notice that If is a constant (the equivalent “rigid” inertia
of the fluid).

Defining the fluid rotation momentum as pF (t) := If θ̇(t),
we rewrite the Hamiltonian as a function of these variables:

HF :=

∫ a/2

−a/2

(
ρbgh̄2α

2
1

2
+

α2
2

2ρh̄b
+ ρbgxh̄α1θ

)
dz

+
p2
F

2If
(27)

The co-energy variables are given by the variational deriva-
tive of HF with respect to the infinite-dimensional energy
variables α1(z, t) and α2(z, t), and the partial derivative
with respect to the finite-dimensional variables θF (t) and
pF (t):

eF1 (z, t) :=
δ

δα1
Hf = ρbgh̄2α1 + ρbgh̄zθF (28)

eF2 (z, t) :=
δ

δα2
Hf =

α2

ρh̄b
= v (29)

eFθ (t) :=
∂

∂θF
Hf = ρbg

∫ a/2

−a/2
hzdz (30)

eFp (t) :=
∂

∂pF
Hf =

p

If
= θ̇F (31)

Notice that eF1 (z, t) is the local pressure relative to equi-
librium, multiplied by the fluid section area (bh̄), eF2 (z, t)
is the local fluid speed. In addition: eFθ is the torque due to
fluid pressure and eFp is the rotation velocity of the tank.

We can rewrite Saint-Venant equations using these new
variables:

∂

∂t

[
α1

α2

]
=

[
0 −∂z
−∂z 0

] [
eF1
eF2

]
. (32)

In addition, we can find the equations of motion that
describe the rotation of the tank:

∂

∂t
pF (t) = −eFθ +Mext, (33)

∂

∂t
θF (t) = eFp . (34)

In matrix form, we get:

∂

∂t

α1

α2

pF
θF

 =

 0 −∂z 0 0
−∂z 0 0 0

0 0 0 −1
0 0 1 0



eF1
eF2
eFp
eFθ

+

0
0
1
0

MF
ext (35)

The time-derivative of HF can be computed as:



ḢF = eF1 (−a/2, t)eF2 (−a/2, t)− eF1 (a/2, t)eF2 (a/2, t) + θ̇M
(36)

Notice that the rate of change of the Hamiltonian is
a function of the boundary conditions (speed and force
applied to the tank walls) and moment/ rotation velocity
of the tank.

3. COUPLING

It is now time to couple all the elements of the system.
First, we notice that several kinematic constraints appear,
due to the coupling at the interconnection point:

• Translation speeds of each subsystem are equal (3
constraints):

ẇB = eB2 (L, t) = eF2 (−a/2, t) = eF2 (a/2, t) (37)

• Rotation speeds in bending are equal (1 constraint):

θ̇B =
∂eB2
∂z

(L, t) (38)

• Rotation speeds in torsion are equal (2 constraints):

θ̇T = eT2 (L, t) = θ̇F (39)

The Hamiltonian of the global system is given by the sum
of each Hamiltonian component (Eqs. 2, 11, 20 and 27):

H = HB +HT +HRB +HF . (40)

Then, by using the sum of each Hamiltonian component
rate of change (Eqs. 6, 12, 21 and 36), and imposing the
previous kinematic constraints, we obtain the following
global Hamiltonian rate of change:

Ḣ = + ẇB
(
−
∂

∂z
eB1 (L, t) + Fext − eF1 (a/2, t) + eF1 (−a/2, t)

)
︸ ︷︷ ︸

FΣ

+ θ̇B
(
eB1 (L, t) +Mext,B

)︸ ︷︷ ︸
MΣ,B

+ θ̇T
(
eT1 (L, t) +Mext,T +Mext

)︸ ︷︷ ︸
MΣ,T

. (41)

Notice that FΣ, MΣ,B and MΣ,T are the sum of exter-
nal forces/moments applied to each subsystem. From a
global system perspective, they are the sum of internal
forces/moments at the interconnection point, which should
be equal to zero:

FΣ = 0, (42)

MΣ,B = 0, (43)

MΣ,T = 0. (44)

Since no damping has been taken into account in the
modeling of the different components, the global system
is power conserving (notice however that exchanges of

energy between subsystems are allowed). Hence, Ḣ should
be equal to zero, which is the case when imposing these
constraints.

Remark. From a control perspective, it could be an
interesting idea to propose feedback laws such as an
external actuator applying forces and moments at the
coupling point: FΣ = −k1ẇB , MΣ,B = −k2θ̇B and

MΣ,T = −k3θ̇T , with k1, k2, k3 ≥ 0. This would guarantee

that Ḣ ≤ 0 and stabilization would be achieved. When
ki = 0 (no feedback), we recover the power-conserving
case above.

4. SPATIAL DISCRETIZATION

Equations for the beam and fluid dynamics are given
by partial differential equations (PDEs) written in the
following form (Eqs. 5, 10 and 32):

Ẋ(z, t) = J δH
δX

, (45)

where J is a formally skew-symmetric differential opera-
tor, X(z, t) is a vector with two components. In the case
of torsion (Eq. 10) and Saint-Venant equations (Eq. 32)
J is a first-order operator. In the case of Euler-Bernoulli
equation (Eq. 5), it is a second-order one.

The spatial discretization can be done using the mixed
finite-element method, proposed by Golo et al. (2004),
which leads to finite-dimensional systems of the following
form:

ẋxxi(t) = J idJ
i
dJ
i
d

∂Hi
d

∂xixixi
+BiBiBiuiuiui, (46)

yiyiyi =(BiBiBi)T
∂Hi

d

∂xixixi
+DiDiDiuiuiui, (47)

where i stands for B, T and F (bending, torsion and fluid
equations), xixixi(t) is a 2N i-dimensional vector (N i is the
number of elements), J idJ

i
dJ
i
d is a 2N i × 2N i skew-symmetric

matrix, BiBiBi is a 2N i ×mi matrix, DiDiDi is a mi ×mi skew-
symmetric matrix, uiuiui and yiyiyi are mi-dimensional vectors
with boundary co-energy variables as components. The
previous matrices, as well as the discretized Hamiltonian
Hi
d for each subsystem are presented in Appendix A.

Now each of the previous infinite-dimensional equations is
approximated as a finite-dimensional system. In addition,
rigid body equations were presented (from Eqs. 14, 15
and 16). By concatenating each state-variable as: xxx =[
xBxBxB xTxTxT xRBxRBxRB xFxFxF

]T
, it is possible to rewrite the full model

using exactly the same framework as for each component:

ẋxx(t) = JdJdJd
∂Hd

∂xxx
+BBBuuu, (48)

yiyiyi =(BBB)T
∂Hd

∂xxx
+DDDuuu, (49)

where JdJdJd, BBB and DDD are the block-diagonal matrices ob-
tained from each component J idJ

i
dJ
i
d, B

iBiBi and DiDiDi matrices. The
discrete global Hamiltonian Hd is the sum of each Hi

d. The
input and output vectors are given by:

uuu =



eB1 (L)

eB1∂(L)

eT2 (L)

FRB
ext

MRB
ext,B

MRB
ext,T

eF1 (−a/2)

eF2 (a/2)


, yyy =



eB2∂(L)

eB1 (L)

eT1 (L)

ẇRB
B

θ̇RB
B

θ̇RB
T

eF2 (−a/2)

eF1 (a/2)


. (50)

The coupling between all the equations is given by the 9
kinematic and force/moment constraints (Eqs. 37, 38, 39,
42, 43 and 44). Notice that all the constraints are linear
functions of these input/output variables. So we can write
the constraints as:

My +Nu = 0, (51)

where M and N are 9× 9 matrices. By inspection of the
discretized Hamiltonian gradients (see Appendix A), it is



possible to see that they are linear functions of the system
state variables:

∂Hd

∂xxx
= QQQxxx. (52)

All the previous equations can be coupled using a descrip-
tor state-space formulation:[

I 0
0 0

]
︸ ︷︷ ︸
E

∂

∂t

[
xxx
uuu

]
=

[
JdQJdQJdQ BBB
MBBBTQQQ MDDD +N

]
︸ ︷︷ ︸

A

[
xxx
uuu

]
(53)

From the generalized eigenvalues of (E,A), it is possible
to find the modes of the coupled system and to com-
pare them to experimentally measured natural frequencies.
In addition, the coupled system can be simulated using
differential-algebraic numerical integration methods (see
e.g. Kunkel and Mehrmann (2006), chapter 8).

5. CONCLUSIONS AND FURTHER WORK

In this paper, we presented the modeling of a fluid-
structure system using port-Hamiltonian formulation. The
methodology is convenient since it allows to model each
component independently. Physically relevant intercon-
nection ports naturally appear when using this formula-
tion, and the resulting system is also port-Hamiltonian.
Numerical results obtained using the methodology pro-
posed here will be presented at the conference and can
be obtained in our website 2 .

Our goal is to use energy-based methods (as Hamroun
et al. (2010)) to design control laws for the coupled system,
thus trying to improve the damping characteristics.

In addition to the control design, several improvements
still need to be done in the modeling. First, only linear
models were used in this paper. We are working on using
nonlinear Saint-Venant equations to represent the fluid
dynamics. In contrast to equations presented in this pa-
per, the biggest difference is that the fluid Hamiltonian
gradient will have several nonlinear terms. After spatial
discretization, the resulting system will be a set of non-
linear Differential-Algebraic Equations. As we have shown
in Cardoso-Ribeiro et al. (2014), experimental results ex-
hibits nonlinear behaviour when exciting the system near
resonant frequencies at high amplitudes. We expect to
be able to use simulation of these nonlinear equations to
reproduce the experimental results, at least qualitatively.

Further work is also needed to include piezoelectric patches
(as done by Voss and Scherpen (2014)). In addition, here
we considered that no dissipation occurs, which is not the
case in practice and a damping model should be included
(as done by Matignon and Hélie (2013)).

After including the constraints of Eq. 51 to the system pre-
sented in Eq. 48, we obtained an implicit port-Hamiltonian
system. While we can use descriptor state-space models
and differential-algebraic equations to simulate this sys-
tem, another choice is to try a coordinate change that
eliminates the constraints and makes the system explicit
(as van der Schaft and Maschke (1994), Wu et al. (2014)).

The spatial discretization presented here can also be
improved by using more accurate methods as the method

2 http://github.com/flavioluiz/port-hamiltonian

proposed by Moulla et al. (2012) (which uses a polynomial
basis, leading to higher accuracy).

An additional issue that needs to be addressed is that the
use of shallow water equations is usually appropriate for
modeling wave propagation in canals and oceans. Since
these equations consider the hypothesis that fluid depth is
much smaller than the tank length, its use is very limited
for representing sloshing in tanks. A better modeling
approach is needed. Incompressible Euler equations with
free-surface boundary conditions are usually the way to
go. However, writing these equations as a PHS is still an
open challenge, at the best of the authors knowledge.
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Appendix A. DISCRETIZATION

For all cases, the finite-dimensional approximation ob-
tained through mixed finite-element methods leads to an
equation like:

∂
∂t

[
x1x1x1

x2x2x2

]
=

[
0 M
−MT 0

] [
∂x1

H
∂x2

H

]
+

[
0 B1

B2 0

]
u, (A.1)

y =

[
0 BT2
BT1 0

] [
∂x1H
∂x2H

]
+

[
0 D
−DT 0

]
u. (A.2)

The values of matrices M , B1, B2 and D, as well as the
dimensions of u and y depends on the differential operator
J . Torsion and Saint-Venant equations have both a first-
order J , whereas Euler-Bernoulli has a second-order one.

A.1 Torsion and Saint-Venant equation

In this case, u = [e1(L) e2(0)]
T

, y = [−e2(L) e1(0)]
T

. The
matrices M , B1, B2 and D are not shown here since they
can be obtained from Hamroun (2009) (Section 2.2.3).

Discretization of torsion Hamiltonian. From Eq. 11:

HT (xT1 , x
T
2 ) =

N∑
i=1

1

2

∫ i∆z

z=(i−1)∆z

(
GJ(xT1 )2 +

(xT2 )2

Ip

)
dz,

(A.3)

where ∆z = L/N is the length of each element. Assuming
constant material coefficients and xT1 (zi, t) = xT1,i(t)/∆z,
inside each element:

HT
d (xT1,i, x

T
2,i) =

N∑
i=1

1

2∆z

(
GJ(xT1,i)

2 +
(xT2,i)

2

Ip

)
, (A.4)

This easily allows us to calculate the co-energy variables:

eT1,i =
∂Hd

∂xT1,i
=
GJ

∆z
xT1,i, (A.5)

eT2,i =
∂Hd

∂xT2,i
=

1

Ip∆z
xT2,i. (A.6)

Discretization of Saint-Venant Hamiltonian

HF (α1, α2, θ, pf ) =

N∑
i=1

∫ zi

zi−1

(
ρgh̄2α

2
1

2
+

α2
2

2ρh̄b
(A.7)

+ρgzh̄α1θ
)
dz +

p2
f

2If
,

HF
d (α1,i, α2,i, θ, pf ) =

N∑
i=1

(
ρgh̄2α2

1,i

2∆z
+

α2
2,i

2ρbh̄∆z
+ (A.8)

+
ρgh̄α1,iθ(z

2
i − z2

i−1)

2∆z

)
+

p2
f

2If
.

eF1,i =
∂Hd

∂αT1,i
=
ρgh̄2

∆z
αF1,i +

ρgh̄θ(z2
i − z2

i−1)

2∆z
, (A.9)

eF2,i =
∂Hd

∂αT2,i
=

1

ρbh̄∆z
αF2,i , (A.10)

eFθ =
∂Hd

∂θ
=

N∑
i=1

ρgh̄α1,i(z
2
i − z2

i−1)

2∆z
, (A.11)

eFpf =
∂Hd

∂pf
=
pf
If

= θ̇ . (A.12)

A.2 Euler-Bernoulli equation

In this case, uuu =
[
e2

0 e
2∂
0 e1

L e1∂
L

]T
and output yyy =[

−e1∂
0 e1

0 −e2∂
L e2

L

]T
. Using a similar development from

Bassi et al. (2007), we’ve found the following matrices:

M =


m1 0 . . . 0
m2 m1 . . . 0
...

...
. . .

...
mN mN−1 . . . m1

 , (A.13)

where:

m1 = − ᾱ

α2
, (A.14)

mi = ᾱ
(2α− i)(α− 1)i−3

αi+1
, i = 2, 3, . . . , N, (A.15)

with ᾱ = 1/∆z and α = 0.5, when using spline approxi-
mation.

D =

−Nᾱ (α− 1)N−1

αN+1
−
(
α− 1

α

)N(
α− 1

α

)N

0

 , (A.16)

B12 =


b11 b12

b21 b22

...
...

bN1 bN2

 , B34 =


−bN1 bN2

−b(N−1)1 b(N−1)2

...
...

−b11 b12

 ,
(A.17)

where:

bi1 = ᾱ
(α− i)(α− 1)i−2

αi+1
, i = 1, 2, 3, . . . , N, (A.18)

bi2 =
(α− 1)i−1

αi
, i = 1, 2, 3, . . . , N. (A.19)

Discretization of Euler-Bernoulli Hamiltonian

HB(xB1 , x
B
2 ) =

1

2

N∑
i=1

∫ i∆z

(i−1)∆z

(
1

µ
(xB1 )2 + EI(xB2 )2

)
dz,

(A.20)

HB
d (xB1,i, x

B
2,i) =

1

2

N∑
i=1

(
1

µ∆z
(xB1,i)

2 +
EI

∆z
(xB2,i)

2

)
,

(A.21)

eB1,i =
∂HB

d

∂xB1,i
=

1

µ∆z
xB1,i , (A.22)

eB2,i =
∂HB

d

∂xB2,i
=
EI

∆z
xB2,i . (A.23)


