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Abstract:This work addresses the study of a highly flexible flying wing. Due to the large structural deflections, the flight
dynamics of this vehicle is strongly affected by the flexible behavior.
A mathematical formulation that couples rigid body flight dynamics with a geometrically nonlinear beam model is applied.
Aerodynamic forces and moments are calculated through unsteady strip theory. The equations of motion are linearized
around equilibrium, allowing the study of dynamic stability.
Results show that, due to coupling between rigid body and aeroelastic dynamic modes, the instability can occur at speeds
and frequencies much lower than usual flutter. For these airplanes, the usual analyses of aeroelasticity and flight dynamics
as independent problems can produce mislead results.
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1. INTRODUCTION

The coupling between aerodynamics and structural dynamics can lead to instability. Divergence and flutter are known
since the early aviation history. (Weisshar, 1995)

In order to find the flutter speed, the structural dynamics model is usually considered as linear. This model is then
coupled with an unsteady aerodynamic model. Through the analysis of the linearized system, it is possible to determine
in which speed the system wiill be stable. (Bisplinghoff, 1996)

Patil (1999) used a nonlinear beam model from Hodges (1990) to analyze the flutter speed of a highly flexible canti-
levered wing. He showed that in order to have more precise results than usual aeroelastic analysis, a nonlinear structural
model is necessary.

Su and Cesnik (2010) used a modelling approach that couples the flight dynamics and aeroelasticity. This model
was used to study the stability of a highly flexible airplane. Structural nodes’ frequencies are low in this case. For this
reason, the frequencies associated with the rigid body and structural modes are similar. This can lead to a low-frequency
instability, associated with the coupling of these movements. This unstable phenomenon is usually called as "free-flight
flutter".

This work uses the methodologies of Brown (2003), Shearer (2006) and Su (2008) to describe the flight dynamics
of elastic airplanes. This formulation implements the geometrically nonlinear beam formulation and includes the inertial
coupling between flight dynamics and flexible structure.

The main goal of this work is to analyze the stability of flexible airplanes and the "free-flight flutter". The nonlinear
differential equations of elastic aircrafts flight dynamics are presented in Section 2. Section 3 describes the process of
linearization and stability analysis. Section 4 describes the airplane studied in this paper. Finally, Section 5 shows the
results of the stability analysis.

2. EQUATIONS OF MOTION

The equations of motion can be obtained from the principle of virtual work. The deduction is presented by Brown
(2003), Shearer (2006), Su (2008) and Ribeiro (2011). The following set of differential equations, representing the full
flexible airplane, are obtained:
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λ̇ =E1λ+ E2z̈ + E3α̈+ E4α̇ (2)

θ̇ =Q cosφ−R sinφ

φ̇ =P + tan θ (Q sinφ+R cosφ)

ψ̇ =
(Q sinφ+R cosφ)

cos θ
(3)

Ḣ =U sin θ − V sinφ cos θ −W cosφ cos θ

ẋ =U cos θ cosψ + V (sinφ sin θ cosψ − cosφ sinψ) +W (cosφ sin θ cosψ + sinφ sinψ)

ẏ =U cos θ sinψ + V (sinφ sin θ sinψ + cosφ cosψ) +W (cosφ sin θ sinψ − sinφ cosψ)

Equation 1 represents the coupled structural and flight dynamics motion. The vector ε represents the deformation
of each structural element. Linear and rotational speeds are represented by β. Mij represents the mass matrix (which
can change along time due to structural deformations); Ci,j represents the damping matrix; Kij is the structural rigidity
matrix. It’s possible to see that rigid body states (represented by β) are inertially coupled with structural states (ε), since
the mass matrix is not diagonal.

RF and RB are the generalized forces that are applied in the airplane. They are obtained from the aerodynamic,
gravitational and propulsive forces applied to each structural node. Strip theory is applied, so that aerodynamic forces and
moments are calculed using bidimensional models in each node.

Equation 2 represents the additional states needed to describe the unsteady aerodynamic effects, due to the wake. The
unsteady aerodynamic modelling applied was proposed by Peters et al. (1995).

Equations 3 are needed to describe the airplane position and orientation. They consist in the Euler angles propagation,
as a function of rotational rates, and position propagation, as a function of body frame linear speeds. Deduction to these
equations are presented by Stevens and Lewis (2003).

3. LINEARIZATION AND STABILITY

Equations 1,2 and 3 consist of a set of nonlinear differential equations. These equations can be linearized around an
equilibrium point. The following expression is obtained:

M


ε̇
ε̈

λ̇

β̇

~̇k

 = N


ε
ε̇
λ
β
~k

+Bu (4)

where ~k is the kinematics vector. This vector represents the variables needed to describe the airplane position and orien-
tation. In the study of stability it is possible to use ~k =

[
θ φ H

]T
and u represents the control inputs (which can be an

aerodynamic surface control and/or engine thrust). M , N and B are constant matrices for a given equilibrium condition.
We can also analyze subsystems of the full airplane, supposing that the motions are uncoupled. In this work, two

submatrices are studied:

• Aeroelastic only system: rigid body degrees of freedom are neglected. This leads to the following system of
equations:

Maeroelast

 ε̇ε̈
λ̇

 = Naeroelast

εε̇
λ

+Baeroelastu (5)

• Rigid body only system: flexible degrees of freedom are neglected:

MRB

[
β̇

~̇k

]
= NRB

[
β
~k

]
+BRBu (6)

Notice that Maeroelast and MRB are submatrices of M : Naeroelast and NRB are submatrices of N . It is possible
to study the dynamic stability of each system by calculating the eigenvalues of the state matrix, given by: A = M−1N ,
Aaeroelast =M−1

aeroelastNaeroelast and ARB =M−1
RBNRB .

The following procedure is used to study the airplane stability in this paper:
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1. Start at a given stable speed V0;

2. Calculate the equilibrium for the given conditions;

3. Linearize the equations of motion: calculate A, Aaeroelast and ARB ;

4. Calculate the eigenvalues of each state matrix;

5. Determine the maximum real part of the eigenvalues;

6. Increase speed and repeat from step 2.

By determining the maximum real part of the eigenvalues of each state matrix, we can determine the instability speed
(once an eigenvalue has positive real part, the system is unstable). The immaginary part of these eigenvalues gives us the
frequency associated with the unstable mode. Additionally, it is possible to determine the modal shape associated with
the unstable mode by calculating the eigenvectors of the state matrix.

4. FLYING WING DESCRIPTION

Patil (1999) suggested a large aspect ratio cantilevered wing to study aeroelasticity of highly flexible structures. Patil’s
goal was to verify how large structural deflections affects the flutter speed and frequency of this wing. It concluded that,
for this wing, studying the dynamic stability around a geometrically nonlinear equilibrium point would change the flutter
speed from 32 m/s to 22 m/s (when compared to the usual aeroelasticity results, which considers an undeformed shape).

In this work, an airplane which uses a very similar wing is studied. It consists in a flying wing, as presented in Figure
1. The (half) wing properties are presented in Table 1. An engine is located in the wing root.

A concentrated mass representing the engine and payload is located in the central wing section. It is located in front
of the leading edge, so that the gravity center is located in the 20% of chord position relative to the leading edge (thus
ensuring static stability of the airplane). The system stability will be studied considering three different concentrated
masses: 10 kg, 12 kg and 15 kg.

Table 1: Wing properties - Patil (1999).

Length 16 m
Chord 1 m
Mass per unit lenght 0.75 kg/m
Elastic axis position (relative to leading
edge)

50% chord

Gravity center position (relative to leading
edge)

50% chord

Rotational inertia I11 0.1 kg.m2/m
Inertia I33 0.1 kg.m2/m
Torsional rigidity K22 = GJ 1× 104 N.m2

Flexional rigidity K33 = EIyy 2× 104 N.m2

Flexional rigidity K44 = EIzz 4× 106 N.m2

Damping coefficient c 0.01%

Flight altitude 20 km (ρ = 0.0889kg/m3)

5. RESULTS

The aeroelasticity results presented by Patil (1999), commented in the previous section, have shown a large difference
between the flutter speed considering a deformed cantilevered wing, when compared to the study of an undeformed wing.
Since the equilibrium deformation in flight will be different from the deformation of the cantilevered wing, one would
expect different results for the flutter velocity in this case. Furthermore, the rigid body degrees of freedom should influence
the stability: they can cause a direct instabiliy, if the phugoid or short period is unstable, for example; or they can cause
instability due to coupling with aeroelastic modes.

This work has the goal of studying the free flight motion of the flying wing. To do this, the eigenvalues of the state
matrix were studied for an interval of speeds. Three different airplanes were studied, considering a concentraded mass of
10 kg, 12 kg and 15 kg.

Figures 3, 4 and 5 presents the largest real part among the eigenvalues of three state matrices:
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Figure 1: Airplane studied: Flying wing.

• Full matrix A (free flight): including structural dynamics, aerodynamics and rigid body states;

• Aeroelastic matrix Aaeroelast: including only structural dynamic and aerodynamic states (rigid body states neglec-
ted);

• Rigid body states: only rigid body states (structural dynamics and aerodynamic states neglected).

See that the three matrices are linearized around the free flight equilibrium point. Studying the eigenvalues of the aero-
elastic matrix means studying a cantilevered wing, but with equilibrium deflections of a free flight equilibrium. Studying
the rigid body eigenvalues means neglecting the aeroelastic modes, but considering that the linearization is around the
equilibrium of a deformed wing.

Figure 3 shows the results for a concentrated mass of 10 kg. It is possible to see that for low speeds, the full flight
motion of the airplane is unstable due to phugoidal motion (this instability is present also in the rigid body eigenvalues).
For higher speeds, aeroelastic instability appears. In this airplane, the full matrix instabilities are very similar from the
submatrices (aeroelastic and rigid body matrices).

For the airplanes with larger concentrated masses, a different comportament is seen. In the case of 12 kg concentrated
mass (Figure 4), the full matrix instability happens at speeds lower than aeroelastic flutter. This instability is related with a
coupling between rigid body and aeroelastic motions. This coupling can be seen while observing the modal shape related
to this unstable mode (Figure 2). It is possible to see that this modal shape presents both structural deformation and rigid
body translation (the flying wing is deslocaded in z axis and rotated in x axis).

In the case of a 15 kg concentrated mass (Figura 5), the free flight instability happens at speeds even lower than classic
flutter.

Table 2 presents the results of speed and frequency of instability for each of the three airplane configurations. It is
possible to see that for the heavier configurations, the frequency of instability is slower than aeroelastic flutter frequency
(actually, these frequency are much closer to rigid body frequencies).

Table 2: Speed and frequency of instability for the flying wing.

Fuselage mass Free flight Aeroelaticity
V f V f

(m/s) (rad/s) (m/s) (rad/s)
10 kg 30.5 12.8 30.5 12.8
12 kg 26.9 4.8 30.9 11.5
15 kg 15.0 3.0 31.4 9.9

Figures 6 and 7 shows the dynamic response after an elevator doublet input. The simulations were performed by
integrating the nonlinear dynamics considering the 12 kg airplane. Two different speeds were simulated: 25 m/s and 28
m/s. As predicted by the stability analysis, at 28 m/s we can see that the oscilations are unstable.
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Figure 2: Modal shape related to the unstable mode.
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Figure 3: Largest part of the eigenvalues as a function of flight speed (10 kg concentrated mass).
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Figure 4: Largest part of the eigenvalues as a function of flight speed (12 kg concentrated mass).
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Figure 5: Largest part of the eigenvalues as a function of flight speed (15 kg concentrated mass).
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Figure 6: Pitch rate response after a doublet elevator input.
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Figure 7: Wing tip response after a doublet elevator input.
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6. CONCLUSIONS

The studies presented in this paper have shown that additional care must be taken when studying the stability of highly
flexible airplanes. The flutter speed obtained by classical aeroelastic approaches may not be appropriate due to two main
reasons:

• The large structural deflections can change the forces distribution around the airplane, changing the flutter speed
(meaning that a structural model that allows large deflections must be implemented);

• The rigid body and aeroelastic modes coupling might lead to slower instability speeds (meaning that a flight dyna-
mics model that includes structural dynamics interferences must be implemented).
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